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SUMMARY

Three test problems were simulated using five different two-phase flow model equation sets from the
open literature. The test problems chosen were a fluidized bed, a batch settling, and a horizontal jet
impingement on a vertical wall. These three problems demonstrate an important cross-section of physical
phenomena, such as fluidized bed voidage oscillations, phase separation, countercurrent flow, and jet
formation. The dispersed flow regime is selected for all three problems. The study was performed to
assess the basic character of the five-field equation sets responding to the same initial and boundary
conditions and using the same finite difference numerical scheme. The general performance of the five
equation sets was found to be similar, even though one of them was ill posed as an initial-value problem.
Broad trends are the same and quantitative differences could be assessed by examining the fine structure
of the results. None of the equation sets could be entirely rejected on the basis of producing physically
impossible or unacceptable results. Copyright © 2000 John Wiley & Sons, Ltd.

KEY WORDS: batch settling; fluidized bed; ill-posed PDEs; jet impingement; two-phase models; well-
posed PDEs

1. INTRODUCTION

In recent years, research has increased concerning the development of two-phase flow model
equations; some of these equation systems possess complex characteristics. The full implica-
tions of the complex characteristics are still not completely agreed upon, but many investiga-
tors agree that the equations are probably ill posed as an initial-value or Cauchy problem.
Certainly they are not completely hyperbolic, which causes numerical difficulties because the
von Neumann analysis for the linear system predicts exponential growth. Ad hoc numerical
techniques using space increments or interfacial drag sufficiently large to stabilize some
unstable modes have recently been suggested.
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It now appears that the modeling difficulties arise from constitutive models and assumptions
concerning the treatment of the pressure, stress, and transient flow forces at the interface
between the phases or inconsistent approximations. Stuhmiller [1] presented an analysis that
tended to support the importance of the interfacial pressure modeling by obtaining the
averaged equation of motion for a single accelerating sphere that has real characteristics.
Banerjee et al. [2] admitted two-phase pressures into their model by adopting an interphase
pressure difference constitutive equation and also obtained all real characteristics. Gidaspow
[3], on the other hand, showed that a consistent thermodynamic approach would also produce
two-phase model equations having all real characteristics.

The objective of this paper is to present the computational results of five transient two-phase
flow models, all solved using the same finite differencing technique, numerical scheme, and
computer code structure [4]. The problems analyzed are

1. One-dimensional fluidized bed.
2. One-dimensional vertical batch settling of a two-phase mixture.
3. Horizontal two-phase jet impingement on a vertical wall.

The one-dimensional fluidized bed problem was chosen because data are available concerning
the frequency of voidage oscillations. The batch settling problem demonstrates the propagation
of density or kinematic waves and phase separation, which has been analyzed by Soo [5]. The
two-phase jet impingement problem can be compared with experimental data [6]. The five sets
of equations under consideration are

1. Soo’s model [7].
2. Gidaspow’s model [3].
3. The Rudinger–Chang model [8], as modified by Lyczkowski [9].
4. The Hancox et al. model [10].
5. The ill-posed model [11] that is the same as the TRAC [12] code vessel model.

These five two-phase models represent a diversified and representative cross-section of active
research. The first four models were chosen because they all explicitly attempted to develop
well-posed two-phase models to remedy the ill-posed model, which is widely used in two-phase
analysis [11]. Gidaspow’s model was developed for fluidized beds. Arastoopour and Gidaspow
analyzed four two-phase models for steady state one-dimensional vertical pneumatic conveying
of solids [13]. The results of the computations from each of the five models are compared with
the available analytical results, with available data and against each other.

2. TWO-PHASE FLOW MODEL EQUATIONS

This section presents the five different two-phase flow equation sets under consideration. In the
interest of compactness, it is best to begin this section with the equation set, which we will refer
to as the ‘basic’ or ‘ill-posed’ set [11]. In this section when we refer to an equation set as being
ill-posed or well-posed, we refer to whether the characteristics for one-dimensional, incom-
pressible (ri, rj=constant), ‘potential type’ [11], and isothermal flow are either complex valued
or real. They are summarized in Appendix B. When the phases are compressible, the
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polynomial for the characteristics does not factor in general. In this case, much more effort is
needed to determine the characteristics numerically [11]. Modifications of this basic set will
then be given for each of the subsequent four sets. The governing equations of mass and
momentum in two-dimensional Cartesian geometry are given by

2.1. Basic equation set

Continuity
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In Equations (1)–(3a) above, i refers to the liquid or solid phase and j refers to the gas or
vapor phase. Gravity is assumed to act in the y-direction. The volume fractions are con-
strained by

ai+aj=1 (4)

since there are never more than two co-existent phases. The drag function K and evaporation
and condensation rates are flow regime-dependent. They are given in Section 3.

The energy equations are given by
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The continuity and energy equations will be taken to be common to all five of the equation
sets. Only the momentum equations change from set to set. The internal shear and thermal
conductivity have been taken to be zero so that we have ‘potential type’ flow [11]. The densities
for each phase are given by

ri, rj=ri(P, hi), rj(P, hj) (6)

or

ri, rj=constant (6a)

depending on the problem. Equations (1)–(3a) possess a complex conjugate pair of character-
istics in one dimension given by Equation (B1) and are therefore ill posed as an initial-value
problem. The usual assumption has been made that the phase pressures are equal [11]. The
momentum equation set, involving pressure times vapor volume fraction gradients, and no
additional terms, is not under consideration; however, it is discussed by Lyczkowski et al. [11].
Arastoopour and Gidaspow found this set to be physically unacceptable for one-dimensional
steady flows [13].

2.2. Soo’s momentum equations

The two-dimensional dispersed Brownian motion flow form of Soo’s [7] momentum equations
is given by

x-Direction momentum

RHS of Equation (2)

−P
(ai

(x
+
(

(x
[riai(um−ui)2]+

(

(y
[airi(um−ui)(6m−6i)] (7)

RHS of Equation (2a)
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where
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rm6m=airi6i+ajrj6j (10)
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rm=airi+ajrj (11)

When these equations are added together for each direction they become

Mixture momentum equations
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The mixture momentum equations given by Equations (12) and (12a) are identical in form to
the inviscid single-phase momentum equations. This set of equations is hyperbolic [7]. The
characteristics are given by Equations (B2)–(B6).

2.3. Extended ‘Rudinger–Chang’ momentum equations

The Rudinger–Chang [8] momentum equations as modified by Lyczkowski [9] are given by
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These equations are hyperbolic. The characteristics are given by Equations (B7) and (B8).

2.4. Hancox et al. momentum equations

These momentum equations were developed for so-called mixed flow by extending analytical
relations derived by Stuhmiller [1] for a single accelerating sphere [10]. The basic assumption
is that the average phase pressures are equal but different from the interfacial pressure. These
equations are, in two dimensions
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In Equations (15)–(16a), the subscripts c and d denote continuous and dispersed phases
respectively with the identification

c= i
d= j

"
for 0BajB0.5 (17)

and

c= j
d= i

"
for 1\aj]0.5

The model used for Cp is from Stuhmiller [1] and is given by

Cp=0.37Cd (18)

where Cd is the single sphere drag function. We used Cd=0.42 (fully turbulent flow) so that
the value of Cp=0.155. This set of equations is hyperbolic for incompressible flow as long as
[10]
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r*=acrd+adrc (19b)

The characteristics are given by Equations (B9)–(B12).

2.5. Gidaspow’s momentum equations

These equations, given by a mixture momentum equation and a relative velocity constitutive
equation [3], were extended to two dimensions by Shih and Arastoopour [14]. They may be
cast into the forms given by Equations (2) and (3) by subtracting the relative velocity equation
times ajrj from the mixture momentum for phase i and using the mixture momentum equation
for phase j. This manipulation results in the following, including mass transfer:
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These equations are hyperbolic [3,15]. The characteristics are given by Equations (B13) and
(B14).

3. THE DRAG FUNCTION AND PHASE CHANGE RATES

In order to close the set of equations, one needs the additional information, i.e., the three
interface jump conditions (interfacial mass, momentum, and heat transfers), and the additional
boundary conditions.
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The above mass, momentum, and energy equations are solved as an initial and boundary
value problem to obtain ai, aj, P, ui, 6i, uj, 6j, hi, and hj. The densities ri and rj are provided
through the use of the equation of state (6) or (6a).

In general, the drag function K is dependent on the flow regime, local vapor volume
fraction, vapor and liquid density, Reynolds’ number, and phase velocity. There are two
models of K function used in the computer program. One is given by [15]
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where C is some coefficient and
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A more elaborate form of K was used in this study, given by [4,16]

K=0.375(r %i+r %j )
!

Cd�Ub i−Ub j �+
12[aimi/ri+ (1−ai)mj/rj ]

rp

"
A(aj, N) (24)

where

A=

Á
Ã
Í
Ã
Ä

a j
2/3�4pN

3
�1/3

, when aj51/2

(1−aj)2/3�4pN
3

�1/3

, when aj\1/2
(25)

rp=

Á
Ã
Í
Ã
Ä

� 3aj

4pN
�1/3

, when aj51/2�3(1−aj)
4pN

n1/3

, when aj\1/2
(26)

The evaporation and condensation rates Ge and Gc are determined from [4]

Ge =leriai(Ti−Ts)/Ts for Ti]Ts

=0 for TiBTs

(27)

Gc =lcrjaj(Ts−Tj)/Ts for Tj5Ts

=0 for Tj\Ts

(28)
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where le and lc are time relaxation parameters with unit s−1. For the tested problem described
in this paper, le and lc are set equal to 0.1.

For the dispersed flow regime, the interfacial heat transfer coefficients, Ri and Rj are
calculated from [17]

Ri=8.067
ki

rp

(29)

for the liquid phase and

Rj=
1
rp

(1+0.37Re0.5Prj
0.33) (30)

for the vapor phase, where

Re=
2rj �Ub i−Ub j �rp

mj

(31)

and

Pr=
Cpj

mj

kj

(32)

The correlations Rj and Ri are obtained with rp defined by Equation (26).

4. NUMERICAL SOLUTION PROCEDURE

The finite difference equations of mass, momentum, and energy are solved as an initial value
problem in time and a boundary value problem in space. The procedure is iterative and the
main steps necessary to determine the flow conditions at time t+Dt from those at time t are
as follows:

1. The pressure distribution at the time t+Dt is guessed.
2. The momentum equations are solved to compute the first approximation of the two

velocity components for each of the two phases.
3. Partial energy equations are solved for approximating enthalpies of both phases.
4. Densities and temperatures of both phases are calculated using equation of state and

estimated enthalpies and pressures.
5. Liquid volume fraction ai is estimated from the continuity equation of liquid. Gas volume

fraction aj is then calculated from the relation aj=1−ai.
6. It is now checked to see if the gas continuity equation is satisfied. If the equation is not

satisfied, then pressure is corrected, the amount of correction being dependent on the mass
residual, and steps 2–6 are repeated. This iterative procedure is continued until the mass
residual is less than the specified value.
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7. Energy equations are solved for enthalpies. Temperatures and densities are then calculated
using the equations of state.

8. A new time step is chosen and steps 1–7 are repeated.

The numerical scheme used in the pressure calculation is

Pb+1=Pb−vj

Dj
b

((Dj/(P)b
, when aj]a* (33)

and

Pb+1=Pb−vi

Di
b

((Di/(P)b
, when ajBa* (34)

where a* is an input constant, e.g., a*=0.001. In the pressure iteration loop, i.e., Equations
(33) and (34), the relaxation factors vi and vj are set to 0.95, since we use Jacobi’s method for
the relaxation procedure, which requires that 0Bv51.0. Dj

b and Di
b are the residue masses

from the continuity equations for j and i phases at iteration step b. The definitions of Dj and
Di are given by
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The momentum exchange terms K(Ub i−Ub j) and K(Ub j−Ub i) in the liquid and vapor momentum
equations respectively are neglected in calculating Equations (33) and (34). It is found that
these formulations result in greater stability for the pressure calculations for the problems that
have been investigated so far. The expressions of these two derivatives with the finite difference
grid shown in Figure 1 are

(Di

(P
=

1
((P/(r %i )z,hdt

+
dt [(ai)z+1/2,h+ (ai)z−1/2,h ]

(dx)2 +
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(dy)2 (37)

and

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 1075–1098



W. H. LEE AND R. W. LYCZKOWSKI1086

Figure 1. Finite difference grid notations and the locations of variables r, h, P, and T are located at the
cell center; velocities u, 6, and flux terms are at cell boundaries.

(Dj

(P
=

1
((P/(rj)z,hdt

+
dt [(aj)z+1/2,h+ (aj)z−1/2,h ]

(dx)2 +
dt [(aj)z,h−1/2+ (aj)z,h+1/2]

(dy)2 (38)

The enthalpy equations were divided into two groups. The first group, including the heat
transfer due to mass transfer, the interfacial sensible heat transfer, and the energy dissipation
due to interfacial friction, is solved inside the pressure iteration loop. The second group, which
contains the pressure compression work, shear stress dissipation energy, and the thermal
diffusion, is solved outside the pressure iteration loop. A more detailed description of the
numerical solution procedure is given in Lee [4]. An outline of a more stable, semi-implicit
numerical scheme, which solves the two-fluid, six-equation model, is briefly described in
Appendix C and generalized the above description. The jet impingement problem described in
Section 5.3 was computed with both numerical schemes and found to produce the same results.

5. DESCRIPTION OF TEST PROBLEMS

This section describes each of the three test problems chosen for simulation.

5.1. Batch settling of a two-phase mixture

The first test problem consists of a single vertical column 0.1 m high and 0.01 m wide filled
with a steam–water mixture of uniform vapor fraction aj=0.40 at a pressure P=1.013×105

Pa and temperature T=373 K. Ten finite difference cells were used, each 0.01 m high. The top
and the bottom are closed so that no material enters or leaves the system. At time 0+, gravity
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is switched on and liquid starts to settle to the bottom while vapor rises to the top. This is a
thought problem, which tests the rate of phase separation and the ability to predict countercur-
rent flow. Fixed values of the interface drag function K were used and no mass transfer
(Ge=Gc=0).

5.2. One-dimensional fluidized bed (interfield drag experiment)

The experimental apparatus consisted in part of a vertical tubular glass column through which
air is passed at known flow rates [18]. Initially, a bed of solid spherical particles rests on a fine
mesh screen at the bottom of the tube. A flow-straightening section to minimize circumferen-
tial motion (swirling) of the gas is located in the entry section below the screen. As gas is
passed through the particles, they are fluidized. Flow conditions, such as air flow rate, initial
bed depth, and particle size and density were varied, and the behavior of the bed was recorded.
For the flow conditions studied, the behavior of the bed is primarily a periodic slug flow or
aggregate fluidization. An oscillatory period begins with the bed lifting off of the screen as a
uniform mass. As it rises, it becomes more diffuse, and particles begin to drop off the bottom
collecting on the screen forming the next slug. The upper boundary of the rising slug remains
relatively flat. When the interparticle distance becomes great enough and the local fluid
velocity is not sufficient to support the particles, the remaining slug falls, joining the lower slug
as it is lifting off the screen.

Several experiments were carried out, but only one is simulated here. Motionless glass beads
of 3 mm diameter (density=2.2×103 kg m−3) initially fill the bottom 160 mm of the bed at
a pressure of 1.013×105 Pa, a temperature of 298 K, and a porosity aj=0.4. The air is treated
as an ideal gas. Twenty cells are used for a total system height of 1.6 m. Each cell is 80 mm
wide and 80 mm high. At time 0+, the pure gas is introduced at 3 m s−1 and the pressure is
reduced at the top to 7.72×104 Pa (atmosphere pressure in Los Alamos, NM). The solids
velocity is set to zero at the bottom and top so that no glass beads leave the system. This
simulation corresponds to the second run in Rexroth and Starkovich’s Table I [18] for which
a time-averaged voidage oscillation period of 0.89 s was obtained. We used the same drag
function K as Rexroth and Starkovich [18].

5.3. Simulation of two-phase jet impinged on 6ertical plate

A horizontal two-phase, steam–water jet impinging on a vertical flat plate experiment [6] was
also simulated. The experiment consisted of a round 10-mm tube discharging against a wall 5
mm away. The discharge conditions were recorded as pressure=3.4×106 Pa, temperature=
510.8 K, vapor volume fraction aj=0.67, and mass flow rate=3.055×104 kg m−2 s−1. At
time t=0+, the high-pressure jet containing the mixture of steam and water enters into a
stagnant atmosphere and impinges on the vertical plate. On the plate, there are five stations
recording the stagnation pressure. This experiment is simulated in three-dimensional Cartesian
co-ordinates with ten cells in each of the x- and y-directions (dx=dy=5 mm), and five in the
z-direction normal to the wall (dz=1 mm). Four cells were used in the jet. The total mass flow
was set equal to the experimental value.
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5.4. Results of computations and discussion

The purpose of the first test problem, the batch settling of a two-phase mixture, is to determine
the effect of the interfacial drag on phase separation. From the computational experiment it
was found that the drag function K has a lower limit of approximately 10 kg m−3 s−1). When
using such a small value of K, the computation tends to become unstable. This instability is
true for all five of the models. However, the instability is due to the numerical scheme used for
solving the governing equations. Therefore, for a more stable finite difference method, the
value of K may be less than 10. For large values of K, i.e., K is greater than about 1000, all
models produce basically the same results. Figure 2 shows the transient void fraction for the
top and bottom cells by using the basic set. With constant K=1000, it takes approximately
0.21 s for the bottom cell to be filled with water and 0.3 s for the top cell to be filled with
steam. For larger values of K, the separation rate decreases as expected, as shown in Figure 2.
The transient vapor volume fractions for top and bottom cells are presented in Figure 3 for
very early time for all the models. As indicated, all of the five models give basically the same
results.

Figure 4 is a schematic of the experimental apparatus for the interfield drag experiment,
whereas Figure 5 defines the modeling mesh and inflow, outflow, and internal boundary
velocities. An artificial reduced flow area is imposed on the cell below the bed of glass beads
so that a high air velocity can be obtained and consequently a non-negative particle velocity
will be maintained. The maximum particle volume fraction oscillation period of 1.025 s and the

Figure 2. Transient vapor volume fraction for top and bottom cells using the basic set Equations
(1)–(3a).
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Figure 3. Transient vapor volume fraction for top and bottom cells in the very early time using all five
models.

slug height of 0.64 m obtained by using the basic model are shown in Figure 6. The
experimental data give a time-averaged oscillation period of 0.89 s and a height of 0.8 m.
This discrepancy can be reduced by using a better drag function K. It was found that all
models except Soo’s give essentially the same oscillatory behavior but have a maximum slug
height of about 25 per cent deviation from the basic set results. This deviation can be seen
in Figure 7, which presents the transient particle volume fraction at the location of 0.2 m
above the screen, i.e., the base of the glass bead bed initial height, for early time. It can be
noticed that Soo’s model produces results that deviate very much from the other models. It
is not clear at this stage which term causes such a deviation but it is believed to be the
inertial coupling terms [7]. Since these results are preliminary (as are all of them), a further
investigation will be carried out in the near future to clarify such points. Hence the results
are subject to change.

Figure 8 shows the experimental set-up and initial operating conditions for the two-phase
jet impingement problem. The calculated results of the pressure distribution on the vertical
plate by using the basic model are given in Figure 9 for different values of interfacial drag
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Figure 4. Apparatus for interfield drag experiment (adapted from Reference [18]).

Figure 5. Calculational mesh set-up (adapted from Reference [18]).
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Figure 6. The particle oscillation period and the slug height.

Figure 7. Transient particle volume fraction at 0.2 m above the screen.
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Figure 8. Two-phase jet impingement experiment (adapted from Reference [6]).

Figure 9. Basic model results as compared with experimental data.

function K and evaporation function Ge. The best simulations are obtained when K=2.0×
1012 and Ge=100. The transient and steady state results of the pressure distribution for all
models except the basic set are shown in Figure 10. At time t=50 ms and steady state, the
models of Gidaspow, Soo, Rudinger–Chang, and Hancox et al. compute the same results. The
steady state pressure distributions are very close to the measurements but not as good as the
basic set as shown in Figure 9. It is interesting to note that at t=50 ms, the results of the basic
set are quite different from the other four models, with the basic set lying below the steady
state pressure and the other four sets overshooting it.
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Figure 10. Computed results as compared with experimental data for all models.

6. CONCLUDING REMARKS

It is concluded that of the five models studied, four of them (basic [11], Gidaspow [3],
Rudinger–Chang [8], and Hancox et al. [10]) are in close agreement with each other and the
data for the low-pressure (0.1 MPa) fluidized bed experiment [18]. Soo’s model [7] disagrees with
the other four models and damps oscillations out, probably due to the presence of the inertial
coupling terms. It is further concluded that all of the five models studied, four of them (Gidaspow
[3], Soo [7], Rudinger–Chang [8], and Hancox et al. [10]) gave essentially the same results and
are in very close agreement with the data for the high-pressure (3.4 MPa) jet impingement
experiment [6]. All five models gave essentially the same results for the batch settling simulation.

A first-order finite difference scheme such as used herein to solve the governing equations
introduces second-order numerical viscous stresses into the momentum equations when we
discretize the differential equations. This will certainly change the stability for the numerical
scheme of the two-phase flow equation sets. For example, Equations (1)–(3a) may become stable
after discretization, depending on the grid size. It is also found that the models of Gidaspow
[3] and Hancox et al. [10] are computationally slightly more unstable than the other three models
because of the presence of the discretized time derivatives on the RHS of the momentum
equations in the numerical schemes described in this paper.
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APPENDIX A. NOMENCLATURE

Cd standard sphere drag coefficient
Cp dynamic pressure coefficient (given by Equation (18))
C* defined by Equation (19a)

gravitational accelerationg
specific enthalpyh
heat conduction coefficientk
drag functionK
number of particles per unit volumeN
pressureP

rp radius of particle
exchange function describing heat transfer between fieldsR
timet
temperatureT
velocity in x-directionu

um mean velocity in x-direction defined by Equation (9)
velocity vector, i.e. Ub = (u, 6)Ub
velocity in y-direction6

6m mean velocity in y-direction defined by Equation (10)
co-ordinate directionx
co-ordinate directiony

Greek letters
a volume fraction

iteration stepb

differenced

eigenvalues used in Appendix Bl1, l2, l3, l4

relaxation parameters used in Equations (27) and (28)lc, le

cell index in y-directionh

dynamic viscositym

relaxation factorv

r microscopic material density
macroscopic material density, e.g., r %i=airir %
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mean density defined by Equation (11)rm

pseudo density defined by Equation (19b)r*
z cell index in x-direction

condensation rateGc

evaporation rateGe

Subscripts
c continuous phase
d discontinuous phase

phase i=solid or liquidi
j phase j=gas or vapor

mean valuem
s saturation state

APPENDIX B. CHARACTERISTICS FOR THE FIVE TWO-PHASE FLOW
EQUATION SETS

1. For the basic equation set [19], the eigenvalues are

l1,2= −
uiriaj+ujrjai

riaj+rjai

9 i
�rjajriai(ui−uj)2

(riaj+rjai)2

n1/2

(B1)

and

l3
−1=l4

−1=0

where

i=
−1

2. For Soo’s momentum equations [7] with c=1 and b=0, the eigenvalues are

l1,2
−1=

−b9 (b2−4ac)1/2

2a
(B2)

and

l3
−1=l4

−1=0 (B3)
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where

a=1+
airj

ajri

b=2uj

�airj

ajri

+
1
aj

−
uiaj

ujai

�
(B4)

and

c=uj
2�airj

ajri

+
1+ai

aj

−
2uiai

ujaj

−
P

ajriu j
2

�
(B5)

The characteristics are real since

b2−4ac=4uj
2��ai

aj

�2�ui

uj

−1
�2

+
P

ajriu j
2

�
1+

airj

ajri

�n
\0 (B6)

3. For the extended Rudinger and Chang momentum equations [9], the eigenvalues are

l1= −uj (B7)

and

l2=l3=l4= −ui (B8)

4. For the Hancox et al. momentum equations [10], the eigenvalues are

l1,2=um96m (B9)

and

l3=l4=0 (B10)

Equation (B9) holds when ud approaches uc and the propagation velocities of interfacial waves
are defined as

um={acrdud+adrcuc+ [2ud−ad(ud−uc)]C*/2}/r* (B11)

and

6m
2 = [(r*+C*)Cprc+ad

2(C*)2/4−acadrc(rd+C*)](uc−ud)2/(r*)2 (B12)

where Cp, C*, and r* are defined by Equations (18), (19a), and (19b) respectively.
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5. For the Gidaspow’s momentum equations [3], the eigenvalues are

l1
−1=l2

−1=l3
−1=0 (B13)

and

l4
−1=

ajri−airj

airjuj−ajriui

(B14)

APPENDIX C. A MORE STABLE NUMERICAL SCHEME

This Appendix gives an outline of a stable, semi-implicit numerical scheme, which calculates
the pressure P and the vapor volume fraction aj based on the following procedures:

1. Consider both vapor and liquid phases to be compressible.
2. Calculate the pressure P and vapor volume fraction aj inside the iteration loop.
3. Compute the residue masses (Dj)b and (Di)b from the continuity equations for vapor and

liquid respectively, based on the iteration step b.
4. Use the relationships Dj=Dj(P, aj), Di=Di(P, ai), and the momentum equations to

obtain

(Dj

(Pb
,
(Di

(Pb
,
(Dj

(a j
b

, and
(Di

(a j
b

5. Solve (Pb+1=Pb+1−Pb and (a j
b+1=a j

b+1−a j
b from the following matrix:

Æ
Ã
Ã
Ã
È

(Dj

(Pb

(Dj

(a j
b

(Di

(Pb

(Di

(a j
b

Ç
Ã
Ã
Ã
É

�(Pb+1

(a j
b+1

n
=
�−Dj

b

−Di
b

n
and then obtain the pressure Pb+1 and the vapor volume fraction a j

b+1.
6. The thermodynamic vapor density rj is obtained from the equation of state rj=rj(P, hj)

and liquid ri from ri=ri(P, hi).
7. The macroscopic vapor density is r %j=ajrj, and that of liquid is r %i=airi.
8. Calculate the new vapor velocities uj

t+Dt and 6 j
t+Dt and the new liquid velocities ui

t+Dt and
6 i

t+Dt from the momentum equations.
9. Check the convergence, i.e., to see if (Dj)bBo1 and (Di)bBo2, where o1 and o2 are some

specified small numbers.
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10. If step 9 is satisfactory, then, the calculation is finished, otherwise, it should go back to
step 3 for new iteration until it converges or stops at some desired iteration step, e.g.,
iteration=100.

11. After step 10 is done, the energy equations will be used to calculate the enthalpies hj and
hi.

The detailed derivations of the matrix coefficients appearing in step 5 are given in Reference
[4].
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